Mitral VIV and VIR Current Evidence

Vinayak Bapat Columbia University Medical Center

Speaker's name : Vinayak, Bapat, New york

⊿ I have the following potential conflicts of interest to report:

: Consultant: Edwards Lifesciences Medtronic Inc Abbott 4Tech 4C Cephea

Three major sources for evidence

- VIVID registry
- MITRAL study
- TMVR registry

VIVID Registry

Patients undergoing procedures in 160 sites in Europe, North-America, Australia, New Zealand, South Africa, South America and the Middle-East (n = 3,751)Aortic Valve in Valve (n = 2,505)Tricuspid Valve in Valve / Valve in Ring (n = 430)**Transcatheter Mitral implants in** failed valves post surgery (n = 816)Mitral Valve in Valve Mitral Valve in Ring (n = 660)(n = 15<u>6)</u>

Index cardiac surgery

• Median 8.5 years since last cardiac surgery (IQR 5-12).

Surgical Mitral Bioprosthesis (n = 660)

Туре	n	%	Size	n	%
Edwards Pericardial / Porcine	307	46.5	23 mm	5	0.8
Medtronic Hancock	103	15.6	25 mm	74	11.2
Medtronic Mosaic	92	13.9	27 mm	210	31.8
St Jude Epic	55	8.3	29 mm	177	26.8
Labcor	8	1.2	31 mm	109	16.5
Sorin	8	1.2	33 mm	13	2
Other / Unknown	87	13.2	Other / unknown	72	10.9

Surgical Mitral Ring (n = 156)

Туре	n	%	Size	n	%
Edwards Physio I / II	95	60.9	26 mm	17	10.9
Medtornic Duran	8	5.1	28 mm	45	28.8
Edwards Classic	8	5.1	30 mm	17	10.9
St. Jude Seguin	7	4.5	32 mm	16	10.3
Medtronic CG Future	5	3.2	34 mm	6	3.8
Cosgrove	4	2.6	36 mm	2	1.3
Other / Unknown	29	18.6	Other / unknown	53	33.9

Access during Mitral VinV / VinR procedures

Transapical 75.9%

Baseline characteristics

	Total N = 816	Mitral Valve-in-Valve N=660	Mitral Valve-in-Ring n=156	P Value
Age (yrs)	73.9 ± 12	74.5 ± 12	71.3 ± 11.8	0.03
Female	486 (59.9%)	408 (62.2%)	78 (50%)	0.005
LogEuroSCORE	31.2 ± 18.4	$\textbf{31} \pm \textbf{18.4}$	32 ± 18.4	0.58
EuroSCORE II	15.7 ± 10.9	15.3 ± 10.8	17.5 ± 11.5	0.048
STS score (%)	12.2 ± 10.7	12.5 ± 11.2	11.1 ± 8.5	0.13
Height (cm)	165.2 ± 9.4	164.6 ± 9.4	167.9 ± 8.8	< 0.001
Weight (kg)	68.5 ±15.2	67.5 ± 14.8	$\textbf{72.6} \pm \textbf{16.2}$	< 0.001

Mechanism of failure

Valve-in-Va

Malpositioning

26 malpositioning events (3.4%).

Procedural characteristics

	Total N = 816	Mitral Valve-in-Valve N=660	Mitral Valve-in-Ring n=156	P Value
Major stroke	9 (1.2%)	9 (1.5%)	0 (0%)	0.15
Acute kidney injury (VARC II/III)	77 (10.2%)	58 (9.5%)	19 (13.5%)	0.16
Major vascular complications	19 (2.5%)	16 (2.5%)	3 (2.1%)	0.65
Bleeding complications	70 (9%)	60 (9.5%)	10 (6.8%)	0.3

Majority Cases were TA

Summary / Conclusions

- VIVID registry displays the first large comprehensive analysis of transcatheter *mitral* valve implantation, including **Valve-in-Valve** and **Valve-in-Ring**.
- Mitral Valve-in-Ring was associated with worse clinical results in comparison with Valve-in-Valve, including more post procedural mitral regurgitation and LVOT obstruction. Almost one third of patients undergoing Valve-in-Ring experienced the composite adverse event end point at 30-days.

MITRAL (Mitral Implantation of TRAnscatheter vaLves)

30-Day Outcomes of Transcatheter MV Replacement in Patients With Severe Mitral Valve Disease Secondary to Mitral Annular Calcification or Failed Annuloplasty Rings

> Mayra Guerrero, MD, FACC, FSCAI On behalf of the MITRAL trial investigators

Primary and Secondary Endpoints

Primary Safety Endpoints

- Technical Success at Exit from Cath Lab/OR*
- Procedural Success at 30 days*

Primary Effectiveness Endpoint

Patient Success at 1 year*

Secondary Safety and Effectiveness Endpoints

• Composite of various adverse events at 30 days and 1 year

Patient Flow

Ring Type	n
Edwards Physio	9
Edwards Classic	4
St. Jude Seguin	3
Medtronic CG Future Ring	3
Medtronic CG Future Band	2
Edwards Physio 2	2
Edwards ET Logix	1
St. Jude Tailor Band	1
Medtronic Simulus SemiRigid	1
Duran AnCore	1
Sorin Memo 3D	1
Sorin Annuloflex	1
Cosgrove Band	1

Valve-in-Ring Arm

Rigid rings = 5 Incomplete rings/bands = 4

Patient Characteristics

ViR Failure mode	n(%)
Regurgitation	17 (56.7%)
Stenosis	10 (33.3%)
Both	3 (10%)

Characteristics	Valve-in-Ring n (%), or mean (±SD)
Age	72 (±9.0)
Female	10 (33.33%)
NYHA	
II	7 (23.33%)
III	20 (66.67%)
IV	3 (10%)
Diabetes	8 (26.67%)
COPD	4 (13.33%)
Home Oxygen	3 (10%)
Atrial Fibrillation	19 (63.33%)
Renal Failure	10 (33.33%)
Prior CABG	18 (60%)
Prior AVR	4 (13.33%)
STS score	9.1 (±6.6)

ViR Procedural Outcomes

100% Transseptal Access

Outcomes	In-Hospital n=30	30 Days n=29*
All-Cause Mortality	2 (6.6%)	2 (6.8%)
Cardiovascular death	1 (3.3%)	1 (3.4%)
Non-Cardiac death	1 (3.3%)	1 (3.4%)

VIR Primary Safety End points

	n (%)
Technical success at exit from Cath Lab (n=30)	21 (70%)
Need for second valve* (position too atrial causing MR=5, leaflet infolding at ventricular edge of THV causing MR=1) * In early experience: Operator's first ViR in MITRAL trial=3, second implant=3)	6 (20%)
2 (+) Mitral Regurgitation (1 treated with paravalvular leak closure)	3 (10%)
Procedural Success at 30 days (n=29, last implant 10-3-17)	18/29 (62%)
Death at 30 days	2 (6.8%)
Reintervention (1 PVL closure attempt followed by surgical MVR)	1 (3.4%)
Mean MVG >10 mmHg (2 were on HD)	4 (13.8%)
MVA < 1.5 cm2	3 (10.3%)
Intracranial hemorrhage (spontaneous bleed in undiagnosed preexisting brain tumor)	1 (3.4%)

Columbia University Medical Center

NewYork-Presbyterian
The University Hospital of Columbia and Cornell

Outcomes of 2nd Valve Requirement

	Alive at 30 Days	Procedural Success Criteria Met	NYHA Class at 30 days
1	Yes	Yes	1
2	Yes	Yes	3
3	Yes	Yes	2
4	Yes	Yes	2
5	Yes	Yes	2
6	Yes	Yes	3

ViR Conclusions

- Transseptal access for ViR can be achieved in most patients (100% in this cohort)
- TS ViR is associated with low 30 day mortality and low complication rate
- Technical success limited by need for second valve improved with experience

Need for second valve was not associated with poor outcomes

- THV design changes (longer inner skirt) may further improve technical success
- Patients treated with TS ViR experienced significant improvement of symptoms
- These results suggest that TS ViR is a reasonable alternative for high risk patients

Outcomes of TMVR for Degenerated Biprostheses, Failed Annuloplasty Rings and Mitral Annular Calcification

Sung-Han Yoon On Behalf of TMVR Registry Investigators

Baseline Characteristics

	ViV	ViR
	(n = 322)	(n = 141)
Age, years	73 ± 13	72 ± 10
Female	59%	37%
STS score, %	9.2 ± 7.2	8.1 ± 6.4
NYHA class IV	32%	26%
Creatinine, mg/dl	1.5 ± 1.3	1.6 ± 1.2
PVD	12%	11%
Prior stroke	18%	12%
COPD	29%	27%
Prior CABG	29%	49%
Prior MI	12%	26%

Procedural Characteristics

	ViV (n = 322)	ViR (n = 141)
Access site	(11 - 022)	(11 – 141)
Transapical	60%	65%
Transseptal	39%	36%
Device type		
Sapien/XT/S3 valves	94%	85%
Lotus	4%	6%
Planned concomitant AVR	4%	1%
Balloon pre-dilatation	11%	4%
Balloon post-dilatation	4%	16%

Procedural Outcomes

	ViV (n = 322)	ViR (n = 141)
Conversion to surgery	0.9%	2.8%
Valve embolization	0.9%	1.4%
LV perforation	1.2%	0.0%
Need for second valve	2.5%	12.1%
LVOT obstruction	2.2%	5.0%
Technical Success *	94.4%	80.9%

* Absence of procedural mortality; successful access, delivery; and retrieval of the device delivery system; successful deployment and correct positioning of the first intended device; freedom from emergent surgery or reintervention

Procedural Outcomes

	ViV	ViR
	(n = 322)	(n = 141)
Echocardiography		
LVEF, %	53 ± 13	44 ± 15
Mean gradient, mmHg	6 ± 3	7 ± 3
MR ≥ moderate	5.6%	18.4%
Re-intervention	10.9%	17.7%
Paravalvular leak closure	2.2%	7.8%
Alcohol septal ablation	0.6%	0.7%
ASD closure	7.1%	5.0%
Surgical mitral valve replacement	1.9%	2.1%
Device success	85%	70%

CARDIOVASCULAR RESEARCH F O U N D A T I O N A Parties for Innecation

COLUMBIA UNIVERSITY MEDICAL CENTER

Clinical Outcomes

	ViV (n = 322)	ViR (n = 141)
Mortality at 30 days	6.2%	9.9%
Stroke	2.2%	0.0%
Bleeding, life- threatening or fatal	2.2%	6.4%
Major vascular complication	1.6%	3.5%
AKI (stage 2 or 3)	4.3%	9.2%
Procedural success	73.6%	58.2%

Mid-term Mortality

All-cause Mortality According to TMVR

CARDIOVASCULAR RESEARCH FOUNDATION A Pattion for Innecation

COLUMBIA UNIVERSITY MEDICAL CENTER

All-cause Mortality According to Post-procedural MR

COLUMBIA UNIVERSITY MEDICAL CENTER NewYork-Presbyterian The University Hospital of Columbia and Come

Valve Thrombosis

Antithrombotic Treatment

Valve Thrombosis and Anticoagulation

COLUMBIA UNIVERSITY MEDICAL CENTER

Conclusions

- Excellent outcomes of TMVR for patients with degenerated mitral bioprosthetic valves (ViV) despite high surgical risk
- Suboptimal procedural outcomes of ViR and ViMAC: second valve implantation, LVOT obstruction and post-procedural MR
- Higher mid-term mortality with ViR and ViMAC due to adverse events and underlying mitral valve disease
- Higher incidence of valve thrombosis without anticoagulation
- Optimal patient selection and advanced device technology promise to improve the outcomes of TMVR

Conclusion 2

- Trans-septal approach may improve outcomes
- VIR Not all rings are good for VIR
- LVOTO bad news
- Anticoagulation is important

VIV Apps

App Store Google market

- Correct Patient
- Correct VIV combination
- Correct position

